مبرهنة ستوكس المعممة
في حساب المتجهات وعلم الهندسة التفاضلية، مبرهنة ستوكس المعممة (بالإنجليزية: Generalized Stokes theorem) أو مبرهنة ستوكس-كارتان،[1] هي نص حول تكامل الصور التفاضلية على المشعبات، والذي يبسط ويعمم العديد من المبرهنات من حساب المتجهات. تنص مبرهنة ستوكس المعممة على أن تكامل الصورة التفاضلية ω على حدود بعض المشعب الموجه يساوي تكامل مشتقها الخارجي dω على كامل i، أي
سُمِّي باسم | |
---|---|
اشتق من | |
يدرسه | |
تعريف الصيغة | |
تعميم لـ |
مبرهنة ستوكس المعممة في شكلها الحديث صاغها إيلي كارتن في عام 1945، بعد العمل السابق على تعميم مبرهنات حساب المتجهات من قبل فيتو فولتيرا، وإدوارد غورسا، وهنري بوانكاريه.
هذا الشكل الحديث لمبرهنة ستوكس المعممة هو تعميم واسع للنتيجة الكلاسيكية التي أبلغها لورد كلفن إلى جورج ستوكس في رسالة بتاريخ 2 يوليو 2 يوليو 1850.[2][3][4] وضع ستوكس المبرهنة كسؤال في امتحان جائزة سميث [الإنجليزية] 1854، مما أدى إلى النتيجة التي تحمل اسمه. تم نشره لأول مرة من قبل هيرمان هانكل في 1861.[4][5] ترتبط مبرهنة ستوكس الكلاسيكية هذه بالتكامل السطحي لدوران حقل متجهي F على سطح (أي، تدفق دوران F) في فضاء إقليدي ثلاثي الأبعاد إلى تكامل خطي للحقل المتجهي على حدوده (المعروف أيضًا باسم «التكامل العروي»)
التفسير الرياضياتي:
ليكن γ: [a, b] → R2 منحنى مستوي جورداني ناعم متعدد التعريف. تستلزم مبرهنة منحنى جوردان بأن γ يقسم R2 إلى مركبتين، أحدهما متراص والآخر غير متراص. ليكن يشير إلى الجزء المتراص المحدود من قبل γ ونفترض أن ψ: D → R3 ناعم، مع S := ψ(D). إذا كانت Γ المنحنى الفضائي المعرف بـ Γ(t) = ψ(γ(t))[ملاحظة 1] و F حقل متجهي ناعم على R3، إذن:[6][7][8]
حيث يشير إلى المؤثر التفاضلي «دوران».
هذا البيان الكلاسيكي، إلى جانب مبرهنة التباعد الكلاسيكية، والمبرهنة الأساسية للتفاضل والتكامل، ومبرهنة غرين هي ببساطة حالات خاصة من الصيغة العامة المذكورة أعلاه.
هوامش
عدل- ^ γ و Γ كلاهما عُرْوات (loops)، ومع ذلك، Γ ليس بالضرورة منحنى جوردان
المصادر
عدل- ^ Physics of Collisional Plasmas – Introduction to | Michel Moisan | Springer (بالإنجليزية). Archived from the original on 2019-04-03.
- ^ See:
- Katz, Victor J. (May 1979). "The history of Stokes' theorem". Mathematics Magazine (بالإنجليزية). 52 (3): 146–156. DOI:10.1080/0025570x.1979.11976770.
- The letter from Thomson to Stokes appears in: Thomson, William; Stokes, George Gabriel (1990). Wilson, David B. (ed.). The Correspondence between Sir George Gabriel Stokes and Sir William Thomson, Baron Kelvin of Largs, Volume 1: 1846–1869 (بالإنجليزية). Cambridge, England: Cambridge University Press. pp. 96–97. ISBN:9780521328319. Archived from the original on 2020-09-01.
- Neither Thomson nor Stokes published a proof of the theorem. The first published proof appeared in 1861 in: Hankel, Hermann (1861). Zur allgemeinen Theorie der Bewegung der Flüssigkeiten [On the general theory of the movement of fluids] (بالإنجليزية). Göttingen, Germany: Dieterische University Buchdruckerei. pp. 34–37. Archived from the original on 2020-07-27. Hankel doesn't mention the author of the theorem.
- In a footnote, Larmor mentions earlier researchers who had integrated, over a surface, the curl of a vector field. See: Stokes, George Gabriel (1905). Larmor, Joseph; Strutt, John William, Baron Rayleigh (eds.). Mathematical and Physical Papers by the late Sir George Gabriel Stokes (بالإنجليزية). Cambridge, England: University of Cambridge Press. Vol. 5. pp. 320–321. Archived from the original on 2016-05-07.
{{استشهاد بكتاب}}
: صيانة الاستشهاد: أسماء متعددة: قائمة المحررين (link)
- ^ Darrigol, Olivier (2000). Electrodynamics from Ampère to Einstein (بالإنجليزية). Oxford, England. p. 146. ISBN:0198505930.
{{استشهاد بكتاب}}
: صيانة الاستشهاد: مكان بدون ناشر (link) - ^ ا ب Spivak (1965), p. vii, Preface.
- ^ See:
- The 1854 Smith's Prize Examination is available online at: Clerk Maxwell Foundation. Maxwell took this examination and tied for first place with إدوارد روث. See: Clerk Maxwell, James (1990). Harman, P. M. (ed.). The Scientific Letters and Papers of James Clerk Maxwell, Volume I: 1846–1862 (بالإنجليزية). Cambridge, England: Cambridge University Press. p. 237, footnote 2. ISBN:9780521256254. Archived from the original on 2020-09-01. See also Smith's prize or the Clerk Maxwell Foundation.
- Clerk Maxwell, James (1873). A Treatise on Electricity and Magnetism (بالإنجليزية). Oxford, England: Clarendon Press. Vol. 1. pp. 25–27. Archived from the original on 2016-06-23. In a footnote on page 27, Maxwell mentions that Stokes used the theorem as question 8 in the Smith's Prize Examination of 1854. This footnote appears to have been the cause of the theorem's being known as "Stokes' theorem".
- ^ Stewart، James (2010). Essential Calculus: Early Transcendentals. Cole.
- ^ This proof is based on the Lecture Notes given by Prof. Robert Scheichl (جامعة باث, U.K) [1], please refer the [2] نسخة محفوظة 3 أغسطس 2019 على موقع واي باك مشين.
- ^ This proof is also same to the proof shown in