دالة غامرة

دالة بحيث يكون لكل عنصر صورة عكسية
(بالتحويل من تطبيق غامر)

في الرياضيات، الدالة الغامرة[1][2][3] أو الدالة الشاملة[1][3][4] (بالإنجليزية: Surjective function)‏ هي دالة يكون مداها مساويا للمجال المقابل.

دالة غامرة (تطبيق غامر) من المجال X إلى المجال المقابل Y. الدالة غامرة لأن كل نقطة من المجال المقابل هي قيمة (f(x بالنسبة إلى نقطة واحدة x على الأقل في المجال.

تعريف

عدل

إذا استخدم المخطط السهمي لتمثيل الدالة، فالدالة الشاملة هي التي يصل إلى كل عنصر في المجال المقابل سهم واحد على الأقل.

بعبارة أخرى، هي دالة يكون فيها كل عنصر من المستقر صورة لعنصر واحد على الأقل من المنطلق (أي كل عنصر من المستقر هو صورة لعنصر أو أكثر من المنطلق).

أمثلة

عدل
  • بالنسبة لكل مجموعة X، الدالة المطابقة المعرفة على X هي دالة غامرة.
  • الدالة {f : Z → {0,1 المعرفة ب f(n) = n mod 2 ، هي دالة غامرة (أي أن الأعداد الصحيحة الزوجية تُربط بالصفر بينما الأعداد الصحيحة الفردية تربط بالواحد).
  • الدالة f(x)=x² المعرفة من   نحو   هي دالة غامرة.

خصائص

عدل

التركيب

عدل

تركيب دالتين غامرتين عادة ما يكون دالة غامرة. انظر إلى دالة متباينة.

معرض صور

عدل

المراجع

عدل
  1. ^ ا ب أفرام بوروفسكي؛ جوناثان بوروين (1995)، معجم الرياضيات: إنكليزي - فرنسي - عربي، المعاجم الأكاديمية المتخصصة (بالعربية والإنجليزية والفرنسية)، ترجمة: علي مصطفى بن الأشهر، مراجعة: محمد الدبس، بيروت: أكاديميا إنترناشيونال، ج. 3، ص. 606، OCLC:822262215، QID:Q121833036
  2. ^ موفق دعبول؛ بشير قابيل؛ مروان البواب؛ خضر الأحمد (2018)، معجم مصطلحات الرياضيات (بالعربية والإنجليزية)، دمشق: مجمع اللغة العربية بدمشق، ص. 691، OCLC:1369254291، QID:Q108593221
  3. ^ ا ب أحمد شفيق الخطيب (2018). معجم المصطلحات العلمية والفنية والهندسية الجديد: إنجليزي - عربي موضح بالرسوم (بالعربية والإنجليزية) (ط. 1). بيروت: مكتبة لبنان ناشرون. ص. 797. ISBN:978-9953-33-197-3. OCLC:1043304467. OL:19871709M. QID:Q12244028.
  4. ^ المعجم الموحد لمصطلحات الرياضيات والفلك: (إنجليزي - فرنسي - عربي)، سلسلة المعاجم الموحدة (3) (بالعربية والإنجليزية والفرنسية)، تونس: مكتب تنسيق التعريب، 1990، ص. 145، OCLC:4769958475، QID:Q114600477

انظر أيضا

عدل